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Abstract

In this note we carry out some basic beam-beam studies for the muon collider in the incoherent
classical approximation, taking into account the instability of the muon. This collider has a beam-beam
parameter value typical of an e+e− collider, and a damping time that is more typical of a hadron collider.
We conclude that these characteristics can coexist thanks to the short cycle time forced by the instability
of the muon. We argue that classical coherent beam-beam effects will almost certainly not materialize,
and neither will long tails that might spoil the beam lifetime; as a result, there is some room for upgrading
the luminosity performance. We also provide some very basic constraints on the ratio β∗/σz and on off-
center collisions arising from the hourglass effect. Finally, we attempt to prioritize work that remains to
be done.

1 Introduction.

Beam-beam interaction effects can be characterized, for the purposes of practical studies, as classical or
quantum, and each of these can be divided in turn into either coherent or incoherent. Obviously there are no
sharp boundaries between these four areas and, at a fundamental level, they coexist. Nevertheless, depending
on the parameter regime, as a practical matter one of these four dominates over the others. In addition,
for multibunch colliders, there are collective effects in which all bunches in the ring “communicate” with
each other via the beam-beam interaction. These multibunch affects are irrelevant for the muon collider as
presently conceived and we shall not discuss them.

Classical beam-beam effects arise from the interaction of the particles in one beam with the classical
electromagnetic field of the opposing beam. The fundamental dynamics is the electromagnetic deflection of
the particles during the collision. Quantum beam-beam effects deal with particle annihilation and creation
as described by relativistic quantum field theory.

Incoherent effects are those that are well described by the interaction of a single particle in one beam
with the other beam (or by the simple superposition of such interactions), while coherent effects are those
that can only be explained by the interaction of the beams with each other as whole.

A basic example of an incoherent classical effect is the blowup of the beam core (emittance blowup) as
the beams collide turn after turn; as a consequence of this blowup the luminosity degrades, at least to some
extent. In this case the phase space of the core particles remains essentially structureless (approximately
gaussian in the case of e+e− machines). Another example is the development of large-amplitude tails in the
particle distribution, which leads to a decrease of the beam lifetime as the particles are gradually lost to
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the machine aperture. In this case, the phase space of these large amplitude particles has a characteristic
structure that is dominated by one or more resonances arising from the combined dynamics of the beam-beam
force and the nonlinear magnetic fields of the machine. These two phenomena dominate the beam-beam
dynamics of essentially all hadron and lepton colliders built so far. For well-tuned e+e− colliders with good
dynamic aperture, these effects have vastly different time scales: the core blowup always happens over a
few damping times, while the development of significant tails can be arranged to happen over thousands of
damping times or even longer [1].

The signature for classical coherent effects is a nontrivial structure of the phase space of the core particles.
This structure can arise when the tune is close to a low-order resonance. An example of this kind of effect is
the flip-flop state in e+e− colliders: in this case, for sufficiently high bunch current, the two beams reach an
equilibrium situation in which one of them is blown up while the other is not. This effect has been observed
in most colliders. Other coherent states that have been predicted in simulations, and perhaps observed
experimentally, are period-2 or -higher fixed points, in which the sizes of the two beams fluctuate from turn
to turn in a periodic pattern. Simulations generally show that the time scale for these effects to develop is
of the order of 10-20 damping times [2, 3].

An example of an incoherent quantum effect for the muon collider is the reaction µ+ +µ− → e+ +e− that
can happen during the beam-beam collision. A muon can also interact with the collective electromagnetic
field of the opposing bunch to produce e+e− pairs; this is a coherent quantum effect.

Quantum effects are clearly more important at high energies, hence their interest for the muon collider.
These are discussed elsewhere in these proceedings. In fact, this collider is the first circular machine in which
quantum effects are not a priori negligible, and deserve detailed study. In this section, however, we will show
that incoherent classical effects are weak, at least for nominal parameter values, and that coherent classical
effects are very unlikely to materialize. We will also provide rough criteria for the tolerances for the ratio
β∗/σz, and for the longitudinal displacement of off-IP collisions which can arise from injection errors or from
RF phasing errors.

2 Physics of the incoherent simulation.

We carry out a simulation with the code TRS [4]. This is a “strong-strong” simulation in which both beams
are dynamical, and their emittances evolve according to their mutual interaction. The simulation is fully
six-dimensional, and the beam-beam interaction is represented as a thick lens by dividing up the bunches into
5 “slices.” We assume one bunch per beam, and a single interaction point (IP). The beams are represented
by “macroparticles” (1024 per bunch in this case), and the machine lattice is assumed to be strictly linear,
so that it is represented by a simple phase advance matrix. The three tunes are taken as input quantities to
the simulation, and we set the chromaticity to 0. From other work, we know that the values we have chosen
for the number of slices and macroparticles are adequate for the nominal muon collider specifications [5].

The beams are described at time t = 0 by six-dimensional gaussian distributions whose σ’s are determined
by the specified nominal parameters of the collider (see Table 1). We then let the bunches collide for 1000
turns, keeping track of the six-dimensional coordinates of all the macroparticles, and measure from these the
beam sizes and the luminosity at every turn as they evolve according to the beam-beam dynamics. The code
invokes the so-called “soft-gaussian approximation” by virtue of which, for the purposes of computing the
beam-beam kick, the opposing bunch is assumed to have a gaussian shape in the two transverse dimensions,
albeit with time-dependent σ’s. This approximation is generally reliable in the absence of coherent effects,
which is almost certainly the case for the muon collider, as we shall discuss below. We take into account the
muon decay by simply multiplying the number of particles per bunch N in each beam by the exponential
decay factor exp(−t/τ), where τ is the Lorentz-dilated muon decay constant.
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3 Beam-beam simulation.

3.1 Simulation conditions.

For the purposes of this simulation, we assume parameters as listed on Table 1 (both beams have the same
parameters). In this table β∗ is the common value of the horizontal and vertical beta-functions and the same

Table 1: Muon collider parameters.

C [km] 7
E [TeV] 2
N 2× 1012

β∗ [mm] 3
εN [mm–mrad] 50
fc [kHz] 42.86
νx 0.57
νy 0.64
νs 1/160
σz [mm] 3

is true for the normalized emittance εN . The values for the horizontal and vertical fractional tunes νx and
νy were picked arbitrarily (the integral part of the tune does not enter the simulation).

With these values, the beam size at the IP is

σ∗ =
√
β∗εN/γ = 2.74 µm (1)

where γ ≈ 18, 900 is the usual relativistic factor. The nominal value for the luminosity is

L =
fcN

2

4πσ∗2
= 1.82× 1035 cm−2 s−1 (2)

which is not exactly 2× 1035 cm−2 s−1, as listed elsewhere in these proceedings, because it is derived from
the other quantities in Table 1, which were taken to be exact.

It is worthwhile to note that the beam-beam parameter,

ξ =
r0N

4πεN
= 0.046 (3)

has a fairly typical value. In fact, beam-beam parameter values like this have been attained or exceeded in
several e+e− colliders (here r0 is the classical radius of the muon). In fact, it is intriguing that the values
of γ and ξ are similar to those in the former PEP collider, so certain aspects of the incoherent beam-beam
interaction can be expected to be similar to those in PEP.

An important parameter in colliding rings is the damping time. Assuming that the energy loss per turn
in the muon collider is 4 MeV [6], the transverse damping time is

τx =
2 TeV

4 MeV
= 0.5× 106 turns (4)

which is much larger than the 1000 turns’ duration of a cycle. The large difference between these time scales
is crucial in explaining some beam-beam effects.
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3.2 Simulation results.

Fig. 1 shows the luminosity as a function of turn number obtained under the assumption that the muon
is a stable particle. One can see that it decreases by ∼ 4% during the course of the 1000 turns due to
the incoherent emittance blowup. This is a small fractional decrease because the beam-beam parameter is
modest, and because the cycle time is so small relative to the damping time.

Fig. 2 also shows the luminosity taking into account the finite muon lifetime. As expected from the
previous result, the curve is essentially determined by the exponential decay factor of the muons.

Fig. 3 shows the luminosity vs. turn number for three values of the number of particles per bunch N (the
emittance was kept fixed at the value given in Table 1). For each value of N we carried out the simulation
for three random number seeds; thus the spread in the curves for each case gives an idea of the statistical
errors of the calculation. The bottom curves, corresponding to the nominal value of 2× 1012, are the same
as in Fig. 2. The middle curves, for N = 4× 1012, still behave quite nominally. However, it is clear that the
curves for N = 6 × 1012 decay faster than exponentially due to substantial emittance blowup. In addition,
when we included a 10σ physical aperture in the simulation, we observed that there were no particle losses
for the first two cases, but there was a ∼ 2% integrated beam loss for N = 6×1012. Although this is a small
fraction of particles, it is reasonable to interpret this as a symptom that the beam-beam strength is being
pushed beyond a prudent limit, and the results of this simulation cannot be taken as a reliable guide. When
this kind of behavior is seen, it is likely that other detrimental effects, not included in this simulation, will
become important and will lead to even more unfavorable behavior. We conclude from this calculation that
the incoherent beam-beam effect is weak for the nominal current and that there is some room for upgrading
the luminosity by increasing the bunch current by a factor of ∼ 2 but not more than this.

4 Other classical beam-beam issues.

4.1 Coherent effects.

Classical coherent effects significantly distort the phase space of the beam core away from the gaussian
shape. This distortion may be static or time dependent, and leads to luminosity degradation; thus, despite
the theoretical interest of these effects, in practice one wants to identify the conditions under which they
appear in order to avoid them.

Simulation studies for e+e− machines [2] show that these effects materialize for beam-beam parameter
values ∼> 0.05 and for isolated values of the fractional tune where certain low-order resonances dominate the
dynamics. More importantly, these results also show that coherent effects take a long time to develop, on
the order of 10 damping times or more, simply because it takes a long time for the particles to redistribute
in phase space in order to give rise to a clear structure. At the beginning of the simulation (the time scale
being set by the damping time), there is no hint of structure, and the phase space distribution is essentially
gaussian. Furthermore, these results are obtained in the zero-bunch-length approximation, and there are
indications [7] that a nonzero bunch length strongly suppresses coherent effects. Although more research is
needed, and experimental work under controlled conditions needs to be carried out to confirm the simulation
results, we can safely conclude from presently available information that these effects are unlikely to appear
in the muon collider.

4.2 Beam tails and beam-beam lifetime.

While the beam core determines the luminosity of a collider, the beam tails determine the beam lifetime.
The beam core, typically understood to be the phase space region within ∼ 3σ of the center, is not very
sensitive to nonlinear machine resonances because the lattice magnetic fields are typically quite linear in this
region. On the other hand, the beam tail extends out to sufficiently large amplitudes so that its dynamics
is sensitive to an interplay [8] of beam-beam and lattice nonlinearities (beam-gas scattering can also come
into play in subtle ways, although typically it has a clearer effect on the beam core).

4



     

There has been much recent progress in understanding and properly simulating the beam tails in e+e−

colliders. These new tools make use of a clever algorithm by which the brute-force tracking is “accelerated”
by 2-3 orders of magnitude in order to determine the particle density and flux at large amplitudes (up to
∼ 20σ or so) [9, 10]. From the particle flux one can then determine the lifetime, given the physical aperture.
For the purposes of this article, one can roughly summarize the conclusions as follows: for a lattice with
reasonable dynamic aperture (meaning 10σ or more), and for reasonable values of the beam-beam parameter
(meaning 0.05 or less), it is not difficult to find working points for which the beam-beam lifetime is of the
order of 107−109 turns (however, the lifetime can degrade by several orders of magnitude by relatively small
changes in these parameters). In any case, the instability of the muon will almost certainly dominate the
beam lifetime, so at least from the perspective of luminosity lifetime, the beam tails will not be important.

Thus the beam tails might be much more important for other reasons such as background and radiation.
The important thing, therefore, is to specify the maximum acceptable number of muons that can hit the
vacuum chamber during the 1000 turns of a cycle. Such a criterion is closely related to that of the dynamic
aperture. In the above-mentioned e+e− simulations, the damping time, typically of order 103 − 104 turns,
also plays an important role. The muon collider, as mentioned earlier, has negligible damping, so in this
respect it is akin to proton colliders. It seems therefore that the tracking tools used to determine the dynamic
aperture of such machines are the right ones for this case, provided they are augmented to include a beam-
beam element. Such a code development should be relatively simple, although the analysis will likely involve
many iterations.

4.3 Hourglass effect for centered collisions.

Because of the geometrical divergence of the beams at the IP, the luminosity is actually smaller than the
nominal value given by Eq. (2), which represents the limiting value as σz → 0. As σz grows at fixed β∗, the
luminosity decreases due to this “hourglass effect.” Neglecting all dynamical effects, this purely geometrical
reduction factor is given, for symmetric round gaussian beams, by the formula [11]

L(σz)

L(0)
=

∞∫
−∞

dt√
π

e−t
2

1 + (t/tx)2
=
√
π tx e

t2x erfc(tx) (5)

where tx ≡ β∗/σz. For the muon collider, tx has been chosen to be unity; in order to get an idea of the
sensitivity to this parameter, we show in Fig. 4 the reduction factor given by the above formula. One can
see that the luminosity degrades quickly as σz increases.

4.4 Hourglass effect for longitudinally-displaced collisions.

By virtue of the hourglass effect, the luminosity also degrades if the bunches collide at a point away from the
optical IP. If the central collision is longitudinally displaced by a distance sc from the IP (but the bunches
still collide transversely head-on), the luminosity reduction factor is given by [11]

L(sc, σz)

L(0, 0)
=

∞∫
−∞

dt√
π

e−(t−tz)2

1 + (t/tx)2
(6)

where tz ≡ sc/σz and tx is the same as above. In Fig. 5 we show the luminosity reduction factor as a
function of tz (please note that in this figure we have normalized the reduction factor to L(0, σz) and not to
L(0, 0) as in Eq. (6)). One can see that the luminosity degrades quickly when the collision point is farther
away than ∼ 1σz from the optical IP. This gives an idea of the phase errors that can be tolerated.
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5 Conclusions.

From the perspective of the classical beam-beam dynamics, the four key features that distinguish the muon
collider are:

1. A relatively modest beam-beam parameter, ξ = 0.046.

2. A short cycle of 1000 turns.

3. A long damping time, τx = 0.5× 106 turns.

4. Unstable muons.

The first feature is shared with many e+e− colliders; the second makes this collider not too different from
single-pass colliders; the third one makes it resemble a hadron collider; and the fourth, of course, is unique
to this machine. It is fair to say that one can understand all features of the classical beam-beam interaction
from the interplay of these four characteristics.

We have shown by means of beam-beam simulations that the classical incoherent beam-beam effect is
quite weak for the muon collider in its present design. From this perspective, there is room for upgrading
the luminosity, if necessary, by increasing the bunch current by a factor of 2 or so but not more than this.

We have argued that coherent classical beam-beam effects are very unlikely to materialize simply because
a 1000-turn cycle is too short.

We have also argued that beam tails are unlikely to affect the luminosity lifetime. Undoubtedly there
will be a certain number of large-amplitude muons that will hit the chamber, and it seems important to
establish this number. This issue is closely related to the determination of the dynamic aperture, and single-
particle tracking tools used for hadron colliders, duly augmented to include the beam-beam interaction, seem
appropriate to address this issue.

From purely geometrical considerations, we have provided a rough estimate (probably a lower bound) of
the sensitivity of the luminosity to the ratio β∗/σz and to the longitudinal displacement of the collision point
from the IP. These estimates yield fairly standard results: one should not choose the ratio β∗/σz below ∼ 1
or so, and one should not allow collisions to be displaced from the optical IP by more than ∼ 1σz in either
direction.

Much work remains to be done to firm up the limits imposed by the beam-beam interaction. Here is a
brief suggested list, roughly in order of priority:

1. Develop a dynamic aperture tool by augmenting a single-particle tracking code to include a “beam-
beam lens.”

2. Track specific lattices, including all nonlinearities, and estimate from the results the number of muons
that hit the vacuum chamber during 1000 turns; iterate this process to determine tolerances on machine
nonlinearities.

3. Establish the sensitivity of the beam-beam interaction to longitudinal and transverse alignment errors
and jitter.
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Figure 1: Luminosity as a function of turn number assuming that the muons are
stable particles. The luminosity degrades by ∼ 4% over 1000 turns due to incoherent
emittance blowup.

Figure 2: Luminosity as a function of turn number, taking into account the finite
muon lifetime. The curve follows closely the expected exponential decay depen-
dence.
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Figure 3: Luminosity as a function of turn number for three different values of
the number of particles per bunch N . For each case we show three runs, each
corresponding to a different random number seed; the spread of the curves for each
case gives an idea of the statistical accuracy of the calculation.

Figure 4: The hourglass luminosity reduction factor as a function of the ratio β∗/σz.
The normalization is L(σz = 0).
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Figure 5: The hourglass luminosity reduction factor when the collisions are longitu-
dinally displaced from the IP by a distance sc, plotted as a function of sc/σz. Note
that the normalization is L(sc = 0, σz = 3 mm), i.e. the nominal value.
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